Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(2): 958-973, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088087

RESUMO

Trapping and temperature-induced migration (TIM) of the first- and second-row atoms A from H to Ne in the face-centered cubic rare gas RG = Ar, Kr and Xe crystals are investigated within the classical crystal model parameterized by the empirically modified pairwise potentials. New ab initio coupled cluster A-RG potentials computed in a uniform way for all the atoms A are used to represent the atom-crystal interactions. Absolute and relative stabilities of the substitutional and interstitial trapping sites, their structures, interstitial migration pathways, related activation energies and rough estimates of the TIM rates are obtained. The isotropic model, which neglects non-zero atomic electronic orbital momentum, reveals that migration of interstitial atoms along the network of conjugated fcc octahedral voids is the generic case for atomic mobility. Anisotropic interactions with a crystal inherent to P-state atoms B, C, O and F are accounted for using the non-relativistic diatomics-in-molecule method. Depending on its sign, interaction anisotropy can alter the structures of interstitial trapping sites and transition states remarkably. This, in turn, can dramatically affect the TIM rates. Comparison with reliable experimental data available for oxygen and hydrogen indicates a systematic overestimation of the measured activation energies, by 30% at worst. A comprehensive literature review accomplished for other atoms reveals a lack of information on the TIM processes and rates, though makes it possible to verify a part of the present results on the trapping site energies and structures.

2.
J Chem Phys ; 157(10): 104303, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36109227

RESUMO

The electronic state chromatography (ESC) effect allows the differentiation of ions in their ground and metastable states by their gaseous mobilities in the limit of low electrostatic fields. It is investigated here by means of accurate transport calculations with ab initio ion-atom potentials for the Cr, Co, and Ni cations in He buffer gas near room temperature. The values for the open-shell ions in degenerate states are shown to be well approximated by using the single isotropic interaction potential. Minimalistic implementation of the multireference configuration interaction (MRCI) method is enough to describe the zero-field transport properties of metastable ions in the 3dm-14s configuration, such as Cr+(a6D), Co+(a5F), and Ni+(4F), due to their weak and almost isotropic interaction with He atom and the low sensitivity of the measured mobilities to the potential well region. By contrast, interactions involving the ions in the ground 3dm states, such as Cr+(a6S), Co+(a3F), and Ni+(2D), are strong and anisotropic; the MRCI potentials poorly describe their transport coefficients. Even the coupled cluster with singles, doubles, and non-iterative triples approach taking into account vectorial spin-orbit coupling may not be accurate enough, as shown here for Ni+(2D). The sensitivity of ion mobility and the ESC effect to interaction potentials, similarities in ion-He interactions of the studied ions in distinct configurations, accuracy and possible improvements of the ab initio schemes, and control of the ESC effect by macroscopic parameters are discussed. Extensive sets of improved interaction potentials and transport data are generated.

3.
J Chem Phys ; 154(4): 044305, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514093

RESUMO

Accommodation and migration of the ground-state (2s22p4 3P) oxygen atom in the ideal Ar, Kr, and Xe rare gas crystals are investigated using the classical model. The model accounts for anisotropy of interaction between guest and host atoms, spin-orbit coupling, and lattice relaxation. Interstitial and substitutional accommodations are found to be the only thermodynamically stable sites for trapping atomic oxygen. Mixing of electronic states coupled to lattice distortions justifies that its long-range thermal migration follows the adiabatic ground-state potential energy surface. Search for the migration paths reveals a common direct mechanism for interstitial diffusion. Substitutional atoms are activated by the point lattice defects, whereas the direct guest-host exchange meets a higher activation barrier. These three low-energy migration mechanisms provide plausible interpretation for multiple migration activation thresholds observed in Kr and Xe free-standing crystals, confirmed by reasonable agreement between calculated and measured activation energies. An important effect of interaction anisotropy and a minor role of spin-orbit coupling are emphasized.

4.
Phys Rev Lett ; 125(2): 023002, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701345

RESUMO

Optical spectroscopy constitutes the historical path to accumulate basic knowledge on the atom and its structure. Former work based on fluorescence and resonance ionization spectroscopy enabled identifying optical spectral lines up to element 102, nobelium. The new challenges faced in this research field are the refractory nature of the heavier elements and the decreasing production yields. A new concept of ion-mobility-assisted laser spectroscopy is proposed to overcome the sensitivity limits of atomic structure investigations persisting in the region of the superheavy elements. The concept offers capabilities of both broadband-level searches and high-resolution hyperfine spectroscopy of synthetic elements beyond nobelium.

5.
Front Chem ; 8: 438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528933

RESUMO

The current status of gaseous transport studies of the singly-charged lanthanide and actinide ions is reviewed in light of potential applications to superheavy ions. The measurements and calculations for the mobility of lanthanide ions in He and Ar agree well, and they are remarkably sensitive to the electronic configuration of the ion, namely, whether the outer electronic shells are 6s, 5d6s or 6s2. The previous theoretical work is extended here to ions of the actinide family with zero electron orbital momentum: Ac+ (7s2, 1S), Am+ (5f77s 9S°), Cm+ (5f77s2 8S°), No+ (5f147s 2S), and Lr+ (5f147s2 1S). The calculations reveal large systematic differences in the mobilities of the 7s and 7s2 groups of ions and other similarities with their lanthanide analogs. The correlation of ion-neutral interaction potentials and mobility variations with spatial parameters of the electron distributions in the bare ions is explored through the ionic radii concept. While the qualitative trends found for interaction potentials and mobilities render them appealing for superheavy ion research, lack of experimental data and limitations of the scalar relativistic ab initio approaches in use make further efforts necessary to bring the transport measurements into the inventory of techniques operating in "one atom at a time" mode.

6.
Sci Rep ; 10(1): 1628, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31988388

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
J Chem Phys ; 153(6): 064110, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287450

RESUMO

An extended combination rule is proposed to relate the dipole-dipole dispersion coefficient for the interaction of the like target species to the same coefficients for the interactions between the target and a set of partner species. The rule can be derived either by uniform discretization of the Casimir-Polder integral on a quadrature or by relating the dynamic dipole polarizabilities of the target species and the partner species. Both methods result in the same system of linear equations, whose solution also requires the knowledge of the dispersion coefficients for interaction between the partner species. The test examples indicate a high accuracy of the proposed rule for dispersion coefficients (better than 1% in the stringent test for the Yb atom interacting with a rare gas and alkaline-earth metal atoms). However, the combination rule does not warrant correct approximation of the dynamic polarizability of the target species.

8.
J Chem Phys ; 151(21): 214302, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822071

RESUMO

Static and dynamic polarizabilities of alkaline earth metal atoms Be-Ba and of the Yb atom, as well as dispersion coefficients and retardation functions for their long-range interactions, are used as a benchmark for the restricted coupled cluster method with singles and doubles (CCSD) and noniterative triples added [CCSD(T)] and related polarization propagator CCSD(3) methods at the complete basis set limit. The latter is attained through the sequence of the augmented correlation-consistent polarized weighted core valence n-zeta basis sets with the exact 2-component approximation for the scalar relativistic effects and with the small-core effective core potentials (for Ca, Sr, and Ba). At the converged level of core correlation treatment, the finite-field CCSD(T) method reproduces the best available data for the static dipole and quadrupole polarizabilities better than 1% and 4%, respectively. Systematic cancelation of the triple contribution in the CCSD(3) calculations of the dynamic polarizabilities of alkaline earth metal atoms makes their dispersion coefficients accurate within 3%. The retardation functions are computed and used for the analysis of the long-range interactions in the homonuclear dimers. Implications to accurate ab initio calculations of the global interaction potentials are discussed.

9.
J Chem Phys ; 151(12): 121104, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575194

RESUMO

Closed-shell metal atoms in rare gas solids tend to occupy highly symmetric polyhedral crystal sites, as follows from the generic triplet Jahn-Teller splitting of the S → P excitation bands and complies with the isotropic nature of the dispersion forces. Atypical 2 + 1 Jahn-Teller splitting inherent to axially symmetric sites observed recently for Ba atoms has been therefore interpreted as the defect accommodation. By modeling the structure, stability, and spectra of the Ba atom in the face-centered cubic rare gas crystals, we identify thermodynamically stable crystal site of axial C3v symmetry that explains experimental observations. We also demonstrate the dramatic effect of the interaction anisotropy on the trapping site structure and stability for an excited P-state atom. Our results provide strong evidence for stable axially symmetric accommodation of isotropic impurity in a close-packed lattice.

10.
Sci Rep ; 9(1): 14807, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616025

RESUMO

Several extensions to the Standard Model of particle physics, including light dark matter candidates and unification theories predict deviations from Newton's law of gravitation. For macroscopic distances, the inverse-square law of gravitation is well confirmed by astrophysical observations and laboratory experiments. At micrometer and shorter length scales, however, even the state-of-the-art constraints on deviations from gravitational interaction, whether provided by neutron scattering or precise measurements of forces between macroscopic bodies, are currently many orders of magnitude larger than gravity itself. Here we show that precision spectroscopy of weakly bound molecules can be used to constrain non-Newtonian interactions between atoms. A proof-of-principle demonstration using recent data from photoassociation spectroscopy of weakly bound Yb2 molecules yields constraints on these new interactions that are already close to state-of-the-art neutron scattering experiments. At the same time, with the development of the recently proposed optical molecular clocks, the neutron scattering constraints could be surpassed by at least two orders of magnitude.

11.
Phys Chem Chem Phys ; 21(30): 16549-16563, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313774

RESUMO

A global optimization strategy is applied to Lennard-Jones models describing the stable trapping sites of a dimer in the face-centered cubic Ar-like lattice. Effective volumes of the trapping sites, quantified as the number of host atoms dislodged from the lattice, are mapped onto the parameter space defined by the strength and range of the dimer interaction potentials. The two models considered differ in the host-guest interaction and give very different maps that reflect the effect of local lattice relaxation. A hierarchical complete-linkage clustering technique is applied to identify generic structural types of the dimer accommodations. The dominant types found and enlisted maintain the symmetry of the isolated dimer and possess high tetrahedral and octahedral symmetry of the host environment with respect to the dimer atoms or center and can be roughly classified as the "whole" or "per atom" dimer accommodations. The results are compared to the analysis of the analogous model for trapped atoms and realistic model for trapped alkaline-earth metal dimers. Implications for matrix isolation spectroscopy are discussed.

12.
J Chem Phys ; 150(6): 064314, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769967

RESUMO

The complexes of the Ba atom and Ba+ cation with the rare gas atoms Ar, Kr, and Xe in the states associated with the 6s → 5d, 6p excitations are investigated by means of the multireference configuration interaction techniques. Scalar relativistic potentials are obtained by the complete basis limit extrapolation through the sequence of aug-cc-pwCVnZ basis sets with the cardinal numbers n = Q, T, 5, combined with the suitable effective core potentials and benchmarked against the coupled cluster with singles, doubles, and non-iterative triples calculations and the literature data available for selected electronic states. Spin-orbit coupling is taken into account by means of the state-interacting multireference configuration interaction calculations performed for the Breit-Pauli spin-orbit Hamiltonian. The results show weak spin-orbit coupling between the states belonging to distinct atomic multiplets. General trends in the interaction strength and long-range anisotropy along the rare gas series are discussed. Vibronic spectra of the Ba and Ba+ complexes in the vicinity of the 1S → 1P° and 2S → 2P° atomic transitions and diffusion cross sections of the Ba(1S0, 3DJ) atom in high-temperature rare gases are calculated. Comparison with available experimental data shows that multireference calculations tend to underestimate the interaction strength for excited complexes.

13.
Phys Rev Lett ; 121(17): 173402, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411953

RESUMO

We present a joint experimental and theoretical study of spin dynamics of a single ^{88}Sr^{+} ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin exchange between the two species occurs after 9.1(6) Langevin collisions on average, spin relaxation of the Sr^{+} ion Zeeman qubit occurs after 48(7) Langevin collisions, which is significantly slower than in previously studied systems due to a small second-order spin-orbit coupling. Furthermore, a reduction of the endothermic spin-exchange rate is observed as the magnetic field is increased. Interestingly, we find that while the phases acquired when colliding on the spin singlet and triplet potentials vary largely between different partial waves, the singlet-triplet phase difference, which determines the spin-exchange cross section, remains locked to a single value over a wide range of partial waves, which leads to quantum interference effects.

14.
J Chem Phys ; 148(15): 154304, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29679969

RESUMO

A highly accurate, consistent set of ab initio interaction potentials is obtained for the title systems at the coupled cluster with singles, doubles, and non-iterative triples level of theory with extrapolation to the complete basis set limit. These potentials are shown to be more reliable than the previous potentials based on their long-range behavior, equilibrium properties, collision cross sections, and transport properties.

15.
J Phys Chem A ; 121(12): 2429-2441, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28263615

RESUMO

Structures and energies of the trapping sites of manganese atom and dimer in solid Ar, Kr, and Xe are investigated within the classical model, which balances local distortion and long-range crystal order of the host and provides a means to estimate the relative site stabilities. The model is implemented with the additive pairwise potential field based on the ab initio and best empirical interatomic potential functions. In agreement with experiment, Mn single substitution (SS) and tetrahedral vacancy (TV) occupation are identified as stable for Ar and Kr, whereas the SS site is only found for Xe. Stable trapping sites of the weakly bound Mn2 dimer are shown to be the mergers of SS and/or TV atomic sites. For Ar, (SS + SS) and (TV + TV) sites are close in energy, whereas (SS + TV) site lies higher. The (SS + SS) accommodation is identified as the only stable site in Kr and Xe at low energies. The results are compared with the resonance Raman, electron spin resonance, and absorption spectroscopy data. Reproducing the numbers of stable sites, the calculations tend to underestimate the matrix effect on the dimer vibrational frequency and spin-spin coupling constant. Nonetheless, the level of agreement is found to be informative for tentative assignments of the complex features seen in Mn2 matrix isolation spectroscopy.

16.
Phys Rev Lett ; 117(14): 143201, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740801

RESUMO

We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb^{+}-Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb^{+}-Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb^{+} immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T^{-0.3} temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb^{+}-Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

17.
J Phys Chem A ; 120(27): 5006-15, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26914616

RESUMO

Equilibrium structures, dissociation energies, and rovibrational energy levels of the electrostatic complexes formed by molecular hydrogen and first-row S-state transition metal cations Cr(+), Mn(+), Cu(+), and Zn(+) are investigated ab initio. Extensive testing of the CCSD(T)-based approaches for equilibrium structures provides an optimal scheme for the potential energy surface calculations. These surfaces are calculated in two dimensions by keeping the H-H internuclear distance fixed at its equilibrium value in the complex. Subsequent variational calculations of the rovibrational energy levels permits direct comparison with data obtained from equilibrium thermochemical and spectroscopic measurements. Overall accuracy within 2-3% is achieved. Theoretical results are used to examine trends in hydrogen activation, vibrational anharmonicity, and rotational structure along the sequence of four electrostatic complexes covering the range from a relatively floppy van der Waals system (Mn(+)···H2) to an almost a rigid molecular ion (Cu(+)···H2).

18.
J Chem Phys ; 141(11): 114305, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240356

RESUMO

Transport properties of Na(+) ions in gaseous hydrogen are calculated using the recently developed "beyond Monchick-Mason" (BMM) approximation and an ab initio Na(+)-H2 potential energy surface. Good agreement with the experimental data on the reduced mobility and longitudinal diffusion coefficient proves the accuracy of the surface and the adequacy of the BMM method, allowing for its optimal parameterization.

19.
J Phys Chem A ; 118(33): 6711-20, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24978305

RESUMO

The structural and spectroscopic properties of the Be(+)-H2 and Be(+)-D2 electrostatic complexes are investigated theoretically. A three-dimensional ground-state potential energy surface is generated ab initio at the CCSD(T) level and used for calculating the lower rovibrational energy levels variationally. The minimum of the potential energy surface corresponds to a well depth of 3168 cm(-1), an intermolecular separation of 1.776 Å, with the bond of the H2 subunit being 0.027 Å longer than for the free molecule. Taking vibrational zero point energy into account, the complexes containing para H2 and ortho D2 are predicted to have dissociation energies of 2678 and 2786 cm(-1), respectively. The νHH band of Be(+)-H2 is predicted to be red-shifted from the free dihydrogen transition by -323 cm(-1), whereas the corresponding shift for Be(+)-D2 is predicted to be -229 cm(-1). The dissociation energy of the Be(+)-D2 complex is calculated to be slightly higher than the energy required to vibrationally excite the D2 subunit, raising the possibility that the onset of dissociation can be observed in the infrared predissociation spectrum at a particular rotational energy level in the νDD manifold.

20.
J Chem Phys ; 140(11): 114309, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655182

RESUMO

High quality, ab initio calculations are reported for the potential energy curves governing the interactions of four singly-charged lanthanide ions (Yb(+), Eu(+), Lu(+), and Gd(+)) with the rare gases (RG = He-Xe). Scalar-relativistic coupled cluster calculations are used for the first three S-state ions, but for Gd(+)((10)D°) it is necessary to take the interaction anisotropy into account with the help of the multi-reference technique. The potential energy curves are used to determine the ion mobility and other transport properties describing the motion of the ions through the dilute RG, both as functions of the temperature, T, in the low-field limit, and at fixed T as functions of the ratio of the electrostatic field strength to the gas number density, E/N. The calculated mobilities are in good agreement with the very limited experimental data that have become available recently. The calculations show a pronounced dependence of the transport properties on the electronic configuration of the ion, as well as a significant effect of the spin-orbit coupling on the transport properties of the Gd(+) ion, and predict that state-specific mobilities could be detectable in Gd(+)-RG experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...